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Abst iract 

Scalzng formal methods t o  large, complex systems re- 
quzres methods of modelzng systems at high levels of ab-  
stractron In  thas paper, we describe such a method for  
speczfyzng system requzrements a t  the software archztec- 
ture level A n  architecture represents a way of breakzng 
down a system rnfo a set of  tnterconnected components 
W e  use archztecture theorzes to speczfy the behavzor of 
a system zn terms of the behuuaor of zts components vza 
a collectzon of axzoms The axaoms descrabe the eflects 
and lzmzts of component varzaizon and the assumptzons 
a component can make about the envzronment provzded 
by  the archztecture A s  a result of the method, the ver- 
zjicatron of the baszc archztecture can be separated from 
the verzjicatron of the zndrvadual component znstantz- 
atzons. We present an example of uszng archztecture 
theoraes t o  model the task coordznatzon archztecture of 
a multz-threaded plan execution system 

1 Introduction 

Large systems are specified and implemented as a 
collection of interconnected components. The  goal is 
to  decompose the system in such a way that the prop- 
erties of the parts can be composed to  create properties 
of the larger system. The architecture is the struc- 
ture of the system, i.e., the assignment of functional- 
ity to  components, and the interaction among compo- 
nents [15]. Viewing each component as an independent 
system with its own architecture results in an  overall 
hierarchical system structure. 

Formalisms have recently been introduced to  make 
software architecture a more rigorous activity [l, 4, 11, 
151. Formal methods allow a (designer to  model aspects 
of a software system and apply mathematical analy- 
sis/verification techniques. In the case of software ar- 
chitecture, component interfatces and interconnections 
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are defined and augmented with formal specificatlions 
and formal languages, such as process algebras, are 
used to  formally specify Component interactions. 

These existing format1 models of software architec- 
ture are concerned with formalizing specific architec- 
tural styles such as pipe-filter and client-server. While 
architectural styles abstract, away many implementa- 
tion details, each stmill represents a highly reduced subset 
of'the space of possible ,system designs. The reduction 
of the design space is what, makes a style usable by 
human designers. However) the fact that  t,he space is 
reduced indicates that  the choice of an architectural 
st,yle is an important design decision that should not 
be made prior t o  initial rlequirements specification. The 
alternatives for decomposing the system requirements 
should drive the selection of a specific architectural 
style. 

When decomposing system requirements, the goal is 
to  capture the relationship between the behavior of the 
system and the behavior of its components. From the 
perspective of the architecture, we would like to know 
the effects and limits of component variation. Specif- 
ically, we want t o  know what component behavior is 
necessary to guarantee correct system-level behavior 
and how variation in component behavior affects the 
behavior of the system. For each Component, we are 
interested in the assumptions that can be made about 
the environment provided by the architecture. 

Effective modeling and manipulation of these rela- 
tionships requires an architecture representation that  
abstracts out operational details and provides a declar- 
ative specification of an axhitecture.  Declarative spec- 
ifications state what something does without stating 
how it does it. The required funct>ionality is separated 
from the non-required side effects of implementation 
decisions. In the case of software architecture, we must 
relate the behavior of the syst.em to  the behavior of the 
subcomponents independent of the style in which the 
architecture is implemented. 
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With  this goal in mind, we have extended Srriith and 
Lowry’s methods for specifying the  structure of algo- 
ri thms using algorithm theories [16, 181 to specify the 
structure of architectures. An archi tec ture  t h e o r y  con- 
strains the  behavior of a system in terms of the behav- 
ior of i ts  subcomponents via a collection of axioms. The  
axiomatic constraints can be used to  reason in both a 
top-down and a bottom-up manner. Given a system 
specification, an  architecture theory, and a subset of 
the components in the architecture, we can determine 
the  functionality required in the missing components. 
Conversely, given a collection of components and an  ar- 
chitecture theory, we can determine the functionality 
of the system constructed by plugging the  components 
into the architecture. 

In this paper, we show how algebraic theories can be 
used to  specify properties of software architectures. We 
begin by describing how components and interconnec- 
tions can Se specified axiomatically. We then describe 
architecture theories and their potential role in soft- 
ware development. Nest,  we give an example of using 
architecture theories by showing their application to 
modeling and verifying a plan execution system. We 
follow this with a discussion of related work and con- 
clude with a summary and a statement of future work. 

2 Specification Fundamentals 

Specifications for both components and architcc- 
tures are expressed as algebraic theories. Theories de- 
fine opera t ions  over a collection of sorts and constrain 
the  behavior of the operations via a set of a x i o m s .  A 
sort ,  like a type,  is a set of values. Operations specify 
how to construct, modify and differentiate values of the  
sort. The  axioms define equivalence sets of values in 
the  sort. 

Theory morphisms are t,he formal mechanism un- 
derlying two methods of composing smaller theories 
t o  form larger ones: e x t e n s i o n  and parame ter z za -  
t i o n  [ lo ,  171. A t h e o r y  m o r p h i s m  maps the sorts and  
operators of one theory to  sorts and operators of an- 
other theory such that the axioms of first theory are 
valid theorems in the second theory. Theory B is an  
e x t e n s i o n  of theory A if B contains all of the sorts, op- 
erators and axioms of A. An extension is represented 
by a theory morphism (from A to B) tha t  maps each 
sort and operator to itself ( the identity morphism) in 
the target theory. 

A parame ter i zed  t h e o r y  is a pair of theories: a pa-  
r a m e t e r  t h e o r y  and a targe t  t h e o r y  that is an  extension 
of the  parameter theory [3]. A parameter theory is 
instantiated by a theory morphism tha t  maps  the pa- 
rameter theory to the  ac tua l  p a r a m e t e r .  This activity 
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Figure 1. Parameterized Theory Instantiation 

is depicted by the parameter passing diagram in Fig- 
ure 1. The  resulting i n s tan t ia t ed  t h e o r y  is constructed 
by computing the  p a s h o a t  of the diagram [a,  101. This 
has the effect of replacing the parameter theory by the  
actual parameter according to the translation defined 
by h. 

We use theories to specify components using two 
predicates: a precond i t ion  and a pos tcond i t ion  [8]. The  
precondition specifies the set of domain values tha t  
have a defined output ,  called the legal i n p u t s  to the 
problem. The  postcondition specifies the relationship 
tha.t must hold between a legal input and a f eas ib le  
ou tpu t .  A theory based framework can also be used to 
specify abstract da t a  types [5] providing a direct path- 
way to extend our ideas to a more complex component 
model. 

A component is represented formally as an  exten- 
sion of the problem t h e o r y  [18] shown in Figure 2(a). 
A specification for a specific problem is created by a 
specification morphism from the problem theory tha t  
provides definitions for the domain, range, precondition 
and postcondition. For example, a search problem is 
specified in Figure 2(b). A c o m p o n e n t  theory’ extends 
a problem theory by adding ari axiom slalirig tha t  a 
valid output exists for every legal input,  as shown in 
Figure 2(c). The  specification for a specific compo- 
nent is created by extending a component specification 
with definitions for the domain, range, precondition 
and postcondition. 

3 Architecture Specification 

An arch,itectu,re fheory specifies the behavior of a sys- 
tem in terms of the  behavior of its subcomponents via 
a collection of axioms. Formally, an architecture the- 
ory is the target theory of a parameterized theory as 
shown in Figure 3 .  Each parameter specification of the 
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(a) 

theory ProblemTheory(D,R,I,O) 
sorts D,R 
operators 
I : D -+ Bool 
0 : D, R -+ Bool 

(b) 

theory FindProblem(D,R,I,O) 
includes 
List (List ,Ret) , 
ProblemTheory(D,R,I,O) 

D tuple of a:List, k:Key 
R tuple of z:Rec 

V a:List, k:Key, z:Rec 
I(<a,k>) == true; 
O(<a,k>,z) == element(a,z) A z.key = k; 

sorts 

axioms 

(c) 

theory ComponentTheory 
includes 

axioms 
ProblemTheory(D,R,I,O) 

V x:D 3 z:R I(x) + O(X,Z) 

Figure 2. Problem and Component Theories 

architecture theory is a problem theory. The  param- 
eter theories are instantiated with actual system and 
component specifications by specification morphisms. 
Constructing these morphisms corresponds to specify- 
ing the system level requirements and selecting compo- 
nents from a library. The  resulting instantiated theory 
is a specialized architecture theory where the defini- 
tions of the system and components are consistent with 
the axioms of the architecture theory. This indicates 
that  the architecture can be used to  correctly decom- 
pose the problem into the selected components. 

The  axioms in an architecture theory specify con- 

' Architecture Problem Theory 
Problem Theory Theory : I 

Component > Theory 

Figure 3. Architecture Theory Instantiation 
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Figure 4. Example Find Architecture 

z 
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theory FindArchitecture 
includes 
FindProblem(D ,R ,System1 , SystemO) , 
SortComponent(List,List,SortI,SortO), 
BinSearchComponent(D,R,BinI,BinO) 

V a,c:List, k:Key, z:Rec 
SystemI(<a,k>) + SortI(a); 
(SortI(a) A SortO(a,c)) + BinI(<c,k>); 
(SystemI(<a,k>) A SortO(a,c) A BinO(<c,k>,z)) 

axioms 

+ SystemO(<a,k>,z) ; 

Figure 5. Example Find Architecture 

straints on the component and  system specifications. 
Constraints specify component behavior that  is neces- 
sary to guarantee correct system-level behavior. They 
also define how variation in component behavior affects 
the behavior of the system. This is done by defining 
they system specification in terms of the component 
specification. Additionally, we can state assumptions 
tha t  can be made by the  component when it oper- 
ates inside the architecture. These assumptions may 
be important for determining when a component can 
be properly plugged-in to an  architecture. 

For example, Figure 4 shows an architecture for the 
Find problem that was sp'ecified in Figure 2.  The  block 
diagram shows the component interconnections, hind- 
ings to the system level interface and the preconditions 
and postconditions of the subcomponents. Figure 5 
shows a corresponding instantiated architecture theory 
The  inclusion of the problem and component theories 
indicate specification morphisms from those theories 
with the shown renamings. The  first axiom states tha t  
the  Sor t  component will operate over all of the legal 
system inputs. The  second axiom specifies that  the 
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mal link between the specification and implementation 
logics. 

The  verification of the architecture schema may in- 
volve a sizeable human effort. However, once complete, 
i t  holds for every instance of the architecture. The  key 
point is t ha t  verification of the basic architecture has 
been separated from the verification of the individual 
component instantiations. 

1 l r l eu l j  Component 

5 Example 
Figure 6. Overview of System Design Using 
Architecture Theories 

combined behavior of the two components is always 
defined, i.e., there exists a legal output for Binsearch, 
for every legal input t o  S o r t .  The  third axiom states 
tha t  for a legal input, the behavior of the components 
results in the correct behavior of the system. Based on 
the component specifications in this example, all three 
axioms are valid. Therefore, the decomposition of the 
problem is correct. 

Additional axioms can be added (by extending the 
theory) to describe a certain class or style of architec- 
tures. This results in a hierarchy of architecture theo- 
ries that  can be used to  classify a problem theory and 
provide a control mechanism for matching an architec- 
ture theory to a problem specification [4, 171. 

4 Architecture Implementation 

An overview of the role of architecture theories in 
system design is show in Figure 6. As described in the 
previous section the specialized architecture theory is 
created by instantiating an  architecture theory with 
a problem and component specifications. The  prob- 
lem decomposition described by an  architecture theory 
is implemented via an architecture schema. An ar- 
chitecture theory may have several associated schemas 
written in a target programming language or an ar- 
chitec2wr.e descrzption language [15]. The  architecture 
schema is instantiated by substituting the selected 
components into the architecture schema. 

The  correct>ness of the implemented system requires 
tha t  the constraints placed on the system by the ar- 
chitecture theory are guaranteed by the architecture 
schema. This can be verified based on a semantics of 
the target programming language or architecture de- 
scription language [ll, 151. It  is possible for the se- 
mantics of the target language to  be formalized in a 
different logic than the specification. If this is the case, 
it  is necessary to  use institutions [6] t o  provide the for- 

In this section we present an example of using archi- 
tecture theories to assist in the verification of a multi- 
threaded plan execution system. This plan execution 
system is one subsystem of NASA’s New Millennium 
Remote Agent [13, 121, an  artificial intelligence-based 
spacecraft control system architecture tha t  is scheduled 
to  launch in December of 1998. 

5.1 Background 

In the plan executive there is a collection of con- 
curreiitly executing control tasks. To simplify the pro- 
gramming of the individual control tasks, there is a 
resource management layer tha t  models the spacecraft 
devices in terms of various propertzes t ha t  they may 
have. The  control tasks often require specific values 
of certain properties to be monitored and maintained 
in order to execute correctly. The  resource manager 
must provide mechanisms for achieving, maintaining 
and monitoring values of properties. It must also pre- 
vent tasks with conflicting requests from executing con- 
currently. 

Finally, when an  event occurs tha t  causes a main- 
tained property to become violated, the resource man- 
ager must suspend the subscribed tasks and invoke 
a specified recovery mechanism tha t  attempts to  re- 
achieve the property. From the perspective of a task, 
the maintained properties are invariants; they are al- 
ways true while the task is executing. However, from 
the perspective of the manager, the  properties may 
come and go. 

Some subtle complexity is added to  the  resource 
manager because it is parameterized on a collection of 
failure recovery mechanisms. This complicates testing 
because it is impossible to  insert every possible failure 
recovery mechanism that may exist. 

5.2 Architecture Specification 

The  architecture for the resource manager is decom- 
posed into four components: a control task, a prop- 
erty locking mechanism, a property maintenance com- 
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theory Lockcomponent (PL,PL,I,O) 
includes 
Property(P), List (P ,PL) , 
ComponentTheory(PL,PL,LockI,LockO) 

axioms 
v p1,pl’:PL 
LockI(p1) == true; 
LockOp1,pl’) == p E pl’ =+ isLocked(p); 

theory MaintainComponent(PL,PL,MaintI,MaintO) 
includes 
Property(P), List (P ,PL) , 
ComponentTheory(PL,PL,MaintI,MaintO) 

D is tuple of pl:PL,sc:SCState 
sorts 

axioms 
v p1,pl’:PL 
MaintI(p1) == p E pl =+ isLocked(p); 
MaintO(p1,pl’) == p E pl’ + TisLocked(p); 

Figure 7. Lock and Maintain Components 

ponent and a recovery mechanism. Due to  the sim- 
ple component model currently supported, we pass 
state into components. We arc currently exploring a 
more powerful component model based on hidden al- 
gebras [5]. However, the current met>hod is compatible 
with the system implementation in LISP. 

Figure 7 shows the specification of the Lock and 
Maintain Components. The specification of the Lock 
component says that  all of the properties will be locked 
after it executes. The  role of the Maintain component 
is to  and maintain component states that  all proper- 
ties will be true after it executes. The ahst,ra.ct state of 
the space craft is denoted by the uninterpreted sort 
SCStat e. The recovery mechanism remains uncon- 
strained in tlie model. Future work will characterize 
the general assumptions that  can be made about exist- 
ing and potential recovery mechanism and the impli- 
cations on the system. 

The architecture theory for the resource manager is 
shown in Figure 8. The  taslk body is the part of the 
task that is executed while properties are being main- 
tained. Because we cannot foresee what functionality 
the control task will perform, we leave this component 
uninstantiated. However, its relationship to  the system 
level specification can still be specified. For example, 
the first axiom in the architecture describes the as- 
sumptions that  the body can make about the architec- 
ture. To model property maimntenance as an invariant, 
the framework must be extended by adding an invari- 
ant predicate to  the generic problem theory. We are 
currently investigating this extension. 

The system precondition must guarantee the pre- 
conditions of‘ the components, directly or indirectly, to  

theory ResourceManagerArch(D,R,I,O) 
includes 
Property(P), List (P ,PL), 
% System level interface: 
ProblemTheory (D ,R, System1 , SystemO) 
MaintainComponent(PL,PL,MaintI.MaintO) 
LockComponent(PL,PL,I,O) 
RecoveryComponent(D-RIY,R-RM,I-RM,O-RM) 

Task Body component 
ComponentTheory(D-body ,R,TaskI ,TaskO) 

D tuple of <pl:PL,a:Args,sc:SCState> 
R tuple of <pl’:PL,sc’:SCState> 

V p:P,pl,pl’:PL,a:Args,sc,sc’:SCState 

TaskI(a,sc) A I(<a,pl,sc>) 
A (p E pl j (isLocked(p) A isAcheived(p))) 

sorts 

axioms 

+ TaskO(a,db,db’); 
I(<a,pl,sc>) + LockIi(p1) A TaskI(a); 

I(ql,a,sc>) A TaskO(<a,sc>,sc) A MaintO(p1,pl’) 
+ 0 (<pl, a, sc>,<pl’ , sc ’>) ; 

Figure 8. Resource Manager Architecture 

guarantee predictable behavior and termination of the 
system. Therefore, the precondition must guarantee 
tha t  the lock mechanism will work and that the body 
will execute if the properties are achieved. The third 
axiom state that  for legal inputs the effect of the exe- 
cution of the resource manager will be be the desired 
efTect of the task body. In effect, the property maintr- 
nance behavior is not visible externally because if does 
not directly effect the post condition. 

5.3 Implementation 

The  Remote Agent Executive is implemented in 
LISP. An informal diagram of the implementation of 
the resource manager is shown in Figure 9. The  con- 
trol tasks are coordinated by subscribing to a lock for 
the desired property. There is a daemon executing 
concurrently with the control tasks that monitors the 
state of the spacecraft (viia the database) and the prop- 
erty locks. If there is an inconsistency between the 
database and the locks, the daemon suspends all tasks 
subscribed to  the property while some action is taken 
t o  re-achieve the property. 

In order to  verify properties of the implementation 
of the resource manager architecture, parts of the LISP 
code were hand-translating into the Promela language 
for the Spin model checker [9]. Promela supports mod- 
eling of multi-process systems and uses an interleaving 
model of concurrency. Spin does exhaustive state space 
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Figure 9. Remote Agent Executive Resource 
Manager 

exploration to  verify temporal properties of Promela 
programs. 

Figure 10 shows the implementation of the Lock 
component. The  with-maintained-prop function is 
called by the task to performs the subscription and 
achieving process. The  task passes in a body of code 
to  be executed while the property is maintained. Fig- 
ure 11 shows the implementation of the Maintain com- 
ponent. This component is implemented as a daemon 
process that  runs concurrently with the tasks. The 
daemon checks the consistency of the locked properties 
and the state of the spacecraft when ever there is an 
update to either. 

The  formal model has been successfully used to  find 
errors in the generic architecture tha t  were not found 
by testing an instantiated system. The  first error was 
found attempting to  verify that  all locks are released 
when a task finishes executing. Spin identified a case 
where a task could be aborted and would fail to  release 
its locks due to  the lack of an atomic section within the 
release lock function call. The  second bug was found 
when attempting to  verify that  a task would eventually 
terminate when has a property violated. In this case, 
Spin found a scenario where a component would not 
abort  when it should. This was due to  the lack of 
the atomic section within get prop l o c k  that  appears 
in the model. A complete report of this verification 
activity is in preparation [7]. 

These subtle bugs persisted in the system through- 
out many months of testing and simulation. This in- 
dicates the difficulty in finding such bugs in a fully 

#define db-query (p) 
db[p.mem-prop] == p.mem-Val 

#define get-prop-lock(this,p,err) 
atomic{ 

f ail-if -incompatible-prop(p, err) ; 
append(this,locks[p.mem~prop].subscribers~; 
if 
: : 1ocksCp.mem-prop] .mem-Val == undef -value -> 

locks Cp. mem-prop] . mem-Val = p .mem-Val ; 
locks [p.mem-propl .achieved = db-query(p) 

:: else 
fi; 
signal-event(L0CK-EVENT) 

1 

#define achieve(p,err) 
if 
: : db-query(p) 
: :  else -> 

if 
: : db [p. mem-prop] = p . mem-val 
:: err = 1 
fi 

fi 

#define with-maintained-prop(this ,p, task-body) 
boo1 err = 0; 
+ 

get -prop-lock (this, p ,err) ; 
achieve-lock-prop(this ,p,err) ; 
task-body 

unless 
1 

{err I I active-tasks [this] .state == ABORTED) ; 
release-lock(this,p) 

Figure 10. Model of Lock Mechanism 

instantiated system. The fact the we were able to  find 
the bugs shows the potential benefits of separating the 
properties of the generic architecture from the prop- 
erties of the entire system. This not only allowed us 
to  capturing important properties of the system but 
also reduced the size of the model so tha t  is could be 
handled by exhaustive state-space exploration. 

6 Related Work 

Our work is an extension of the work done on 
Kestrel’s Interactive Development System (KIDS) [16, 
181. In KIDS, the structure of specific algorithms, such 
as global search or divide and conquer, are represented 
as algorithm theories. Currently, the program schemes 
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proctype Maintain-Prop-Daemon(Task1d this)( 
bit lock-violation; 
byte event-count = 0; 
bit first-time = true; 
do 
: : check-locks(1ock-violation) ; 
if 
: :  lock-violation -> 

: :  else 
fi; 
if 
:: (!first-time && 

do-aut omat ic-recovery 

Ev [MEM-EVENT] . count 
+ Ev [LOCK-EVENT] . count ! = event-count ) -> 
event-count = Ev [MEM-EVENT] . count 

+ Ev [LOCK-EVENT] .count 
: :  else -> 

first-time = false; 
wait-for-events(this,MEM-EVENT,LOCK-EVENT) 

fi 
od 

1 ;  

Figure 11. Model for Maintenance Daemon 

that  are used to implement a.lgorithnis theories result in 
functional style programs. Architecture theories gen- 
eralize algorithm t,heories by specifying structure in 
terms of subcomponent pro'bleni theories rather than 
operators. This allows the construction of hierarchical 
systems. We are currently exploring tactics for ap- 
plying architecture theories for component adaptation 
based on the result,s of specification matching [14]. 

Most efforts t o  formalize software architecture [l, 
151 are targeted at formalizing specific architectural 
styles (pipe-filer, client-sewer, etc.) and not with the 
problem decomposition aspects of architecture. There- 
fore, the representations used are t800 operational to 
represent the types of relationships tha t  we are inter- 
ested in. However, formal models of archit,ectural styles 
do provide an  important semantic link between an  ar- 
chitecture specification and implementation. The  two 
following approaches are particularly well suited to  fill 
this role due to their use of t,heories t o  describe archi- 
tecture. 

Gerken presents a formal foundation for software ar- 
chitectures tha t  also uses thLeories as the main unit of 
specification [4]. He introduces s t ruc ture  theor i e s  that  
are used to  interconnect components in various styles. 
To overcome the inherently functional (as in functional 
programming language) architecture of algebraic spec- 
ification, he used a process logic to represent the con- 

straints introduced by structure theories. We believe 
tha t  the process logic descriptions of architectures are 
too operational to effec tively model the relationships 
we are interested in. However, this approach does sup- 
port modeling of invariants which is currently not sup- 
ported in our framework. 

Marconi et. al. [ I l l  use theory-based architecture 
representations to support architecture refinement. A 
refinement maps an abstract architecture description 
in one style to  a concrete architecture (an implenienta- 
tion) in a potentially different style. This allows pro- 
gram development by incremental refinements a t  the 
architectural level. Axioms are used tro describe style 
constraints and form the basis for correctness proof of 
the refinement mappings. This work is concerned with 
architecture implementation and could be used to spec- 
ify links between architecture theories and architecture 
schemas. 

7 Conclusion 

This papers describ'es a technique for extending 
declarative specification to the realm of soft,ware archi- 
t,ecture. An nrch,ilecturc theory  const,rains the behavior 
of a system in t>ernis of the behavior of its subcompo- 
nents via a collection of axioms. The  axioms define 
component interconnect,ion, interface binding and the 
correctness of an architecture. These relationship are 
specified declaratively, abstracting away implementa- 
tion concerns. An example was presented using ar- 
chitecture t,heories t o  model the resource management 
system of a multi-threa'ded plan executive. The  result 
was tha t  the verification of the basic architecture was 
separated from the verification of the individual com- 
ponent instantiations. This was especially important 
because the instantiated system was too complex for 
sthndard verification and validation techniques. 
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